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Introduction 
 
Normal atrial contraction requires an electromechanical impulse to propagate in an orderly way 
across myocardial cells. Any disruption in the structural and ionic components may result in chaotic 
electrical activity known as atrial fibrillation (AF). Similarly, a break down in the structural or 
electrical integrity of the sinus node or conduction system can result in conduction system disease. 
 
This chapter will discuss the main molecular mechanisms known to underlie the development of AF 
and conduction system disorders, focusing on the genes and association loci that have been linked 
to these conditions and the possible ways in which treatment options for these conditions could be 
influenced by knowledge of the underlying genetic pathways. 
 
Research efforts have focused on two approaches – examining genetic variants in the human 
population, and then investigating expression of specific genes in animal models or human tissue. 
Genetics in the human may involve analysis of AF/conduction disease as a monogenic disease in 
individuals with primary electrical disease, analysis of AF/conduction disease presenting in the 
setting of another familial disease, or the genetic background that might predispose to the disease 
without it necessarily segregating in a family. The first two pathways provide definitive insight into 
the aetiology and require analysis of families with the disease segregating across generations and 
following Mendelian inheritance in the context of a large effect size. 
 
The third method involves investigating common variants. This can be performed through candidate 
single nucleotide polymorphism (SNP) studies, where a relatively small number of SNPs are 
examined in genes that are suspected to be associated with a disease, and uses known biology or 
associations to select the most relevant SNPs. Alternatively, genome wide association studies 
(GWAS) examine millions of SNPs throughout a large population sample for unsuspected 
associations and can identify new biological mechanisms. Non-related cases of AF/conduction 
disease matched to controls by age and gender are compared to identify differences in segregation 
of genetic backgrounds between both groups that may explain susceptibility to the disease. These 
methods examine common variants which have a small effect size, conferring susceptibility to AF 
along with a number of acquired factors or co-morbidities (Figure 1). 
 
Studies looking at alterations in gene expression of ion channels and regulatory subunits are usually 
performed in animal models of the disease, but can be undertaken on a more limited scale in 
humans (Figure 2). They provide information on molecular changes triggered by the disease, which 
may uncover the mechanisms leading to, for example, conduction disease or that allow paroxysmal 
AF to become permanent. In AF for example, this may provide insight into whether changes in the 
atria form the aetiology of the disease, are a maladaptation or a compensatory mechanism (1–3). 
 

Cardiac conduction disease 
 



Conduction diseases encompass an important group of potentially life-threatening cardiac 
conditions accounting for approximately 50% of the one million permanent pacemakers implanted 
worldwide each year (4). Morgagni was the first In 1761 to link recurrent fainting episodes with a 
slow pulse in a family, and similar observations were later made by Adams and Stokes.  The 
development of the electrocardiogram at the end of the nineteenth century provided tighter 
definitions of related phenotypes, but it was not until 1964 that two independent researchers 
published reports on a form of progressive CCD combining clinical observations, ECG recordings and 
detailed post mortem studies of the heart (5,6). Their descriptions were subtly different, with Lev 
describing a diffuse fibrotic degeneration through the fibrous skeleton of the heart, whilst in 
Lenègre’s description the fibrosis was limited to the conduction fibres. However, both involved 
progressive conduction slowing through the His-Purkinje system with left bundle branch block 
(LBBB) or right bundle branch block (RBBB) and widening of QRS complexes leading to complete AV 
block and sometimes causing syncope or sudden cardiac death (SCD). Lenègre-Lev Syndrome is now 
synonymous with ‘Progressive Cardiac Conduction Disease’ (PCCD). 
 
Thus, conduction diseases comprise a heterogeneous group of conditions that may be either 
inherited or acquired, and either associated with structural abnormalities of the heart or manifest as 
‘primary electrical diseases’ (7). Cardiac activation is initiated in the sino-atrial node with the rate of 
depolarization dependent on the magnitude of the Na+ (sodium) current involving Na+ channel 
function and availability. The depolarizing current then spreads between cells through intercellular 
gap junctions.  These each comprise hemi-channels, each containing 6 connexin protein subunits 
(Figure 3) (8), which are low-resistance channels that provide electrical coupling and intercellular 
electrical communication (9). Thus conduction disease can result in abnormalities in any of the 
molecular components involved in electrophysiological activity, contractile function and cell–cell 
adhesion.  

Sodium channel mutations causing PCCD 
 

SCN5A  

 
The first gene to be associated with PCCD was SCN5A, which encodes the alpha subunit of the 
voltage gated Na+ channel. Na+ channels are essential for the transmission of the cardiac impulse 
through both the fast conducting system and the working myocardium (10), and it is therefore 
unsurprising that ‘loss-of-function’ mutations might result in conduction disease. In 1999, Schott’s 
group (11) described a family with PCCD with various types of conduction disorder displayed in its 
members: RBBB, LBBB, left anterior or posterior hemi-block and long PR intervals. These defects 
were progressive over time (Figure 4). Linkage analysis mapped the disease locus to chromosome 3 
near SCN5A. Direct sequencing of affected members identified a splice donor site mutation in exon 
22 of SCN5A (IVS.22+2T->C) in 25 affected members. These observations suggest that PCCD 
associates SCN5A loss of function together with an additional permissive factor related to aging. 
Heterozygote Scn5a+/- mice demonstrate prolonged PR intervals, AV block and prolonged QRS 
intervals that worsen with age, associated with a pronounced myocardial rearrangement, including 
fibrosis and redistribution of connexin43 expression (12,13). 
 
There have subsequently been many reports identifying new SCN5A mutations causing PCCD or non-
progressive CCD. Mutations have been found in various locations on SCN5A (Figure 5), and have 
been postulated to give rise to loss of Na+ channel function. Some mutations result in a non-
functioning protein (14–16), whilst in others there is a defect in the trafficking mechanisms or in the 
channel gating behaviour once the protein is inserted into the membrane (17–21). In the case of a 
Dutch family segregating a specific missense allele (G514C), the mutation causes unequal 
depolarizing shifts in the voltage-dependence of activation and inactivation such that a smaller 



number of channels are activated at typical threshold voltages (17). Two SCN5A mutations causing 
isolated conduction disturbances (G298S and D1595N) are also predicted to reduce channel 
availability by enhancing the tendency of channels to undergo slow inactivation in combination with 
a complex mix of gain- and loss-of-function defects (22).  

There are also cases in which individuals with severe impairment in conduction have inherited 
mutations from both parents. Lupoglazoff et al. described a child homozygous for a missense SCN5A 

allele (V1777M) who exhibited rate-dependent atrio-ventricular (AV) conduction block (23). In a 
separate report, probands from 3 families exhibited perinatal sinus bradycardia progressing to atrial 
standstill (‘congenital sick sinus syndrome’ (SSS)) and were found to have compound heterozygosity 

for mutations in SCN5A (24). Compound heterozygosity in SCN5A has also been observed in 2 cases 

of neonatal wide complex tachycardia and a generalized cardiac conduction defect (18). These 
unusually severe examples of SCN5A-linked cardiac conduction disorders illustrate the clinical 

consequence of near complete loss of Na+ channel function.  
 

Recently, mutations have been found which have a modulator effect on SCN5A. Niu et al (25) 
described a W1421X mutation where four generations of a family demonstrated cardiac conduction 
abnormalities and several cases of SCD. However, one member with the mutation was unaffected, 
and was found to have a second mutation SCN5A-R1193Q, postulated to have a protective role in 
moderating the impact of the first mutation. Polymorphisms in connexin genes have also been found 

to have effects. Groenewegen et al (26) identified SCN5A-D1275N co-segregating with two 
connexin40 genotypes in familial atrial standstill (AS). Whilst SCN5A-D1275N channels showed only a 
small depolarizing shift in activation compared with wild type the combined effect led to the severe 
conduction defects.  
 
All the above variants result in purely functional conduction disorders; however, SCN5A mutations 
may also result in structural abnormalities along with CCD.  In 2004, a large family with members 
suffering from sinus node dysfunction, arrhythmia and ventricular dysfunction, was found to 
harbour SCN5A-D1275N (27) demonstrating that genes encoding ion channels can also be associated 
with dilated structural phenotypes. Since then, other families with SCN5A mutations have been 
identified who display heart failure and atrial arrhythmias as well as conduction disorder (28–30). 
Whilst it is possible that such structural abnormalities arise through tachycardia-induced 
cardiomyopathy, most evidence suggests that DCM may well be a primary manifestation of the 
SCN5A mutation (41).  This may result from interactions of the cardiac Na+ channel with cytoskeletal 
components or through altered calcium homeostasis as a consequence of alterations in intracellular 
Na+ concentrations ([Na]i). 
 

SCN5A overlap syndrome 

 
SCN5A mutations are associated not only with CCD but also Long QT (LQT3) and Brugada Syndromes 
(BrS). A gain-of-function mutation of the Na+ channel is seen in LQT3 leading to a more prolonged 
depolarizing current, increasing the action potential duration (APD). BrS is associated with reduced 
Na+ channel function and is characterized electrocardiographically by ST elevation in the right 
precordial leads and RBBB. Whilst isolated PCCD does not usually involve the ECG changes seen with 
BrS or LQT3, SCN5A mutations may also be associated with more complex phenotypes that appear 
to represent combinations of the characteristics of BrS, conduction system disease and LQT3 (Figure 
6). In one example, deletion of lysine-1500 in SCN5A was associated with impaired inactivation, 
resulting in a persistent Na+ current, but also reduction in NaV channel availability by opposing shifts 
in voltage-dependence of inactivation and activation (31). These complex relationships between 
genotype and phenotype may underlie clinical findings that individuals with BrS and an identifiable 
SCN5A mutation have longer PR intervals (32) and may experience more bradyarrhythmias (33) than 



BrS individuals with BrS who do not have an identifiable SCN5A mutation. However, Lenègre-Lev and 
Brugada Syndromes remain two distinct clinical entities, as only those individuals with a BrS 
phenotype display ST elevation and ventricular arrhythmias.  
 

SCN1B  

 
The cardiac Na+ channel protein Nav1.5 constitutes the pore-forming subunit of a multi-protein 
complex (34). There are at least four beta subunits that modulate the expression and function of the 
Na+ channel (35). 3 pathogenic mutations have been found in the SCN1B gene, encoding the Na+ 

channel β1 subunit, which decreased the Nav1.5 mediated current in cellular expression system 
compared with controls (36). 
 

SCN10A  

 
Several large GWAS have demonstrated that loci within the SCN10A, encoding the Na+ channel 
Nav1.8, associate with AV conduction (37) and BrS (38). A recent study has demonstrated cardiac 
expression of SCN10A, and identified an association of a non-synonymous SNP in the SCN10A with 
prolonged cardiac conduction. The PR interval is shorter in Scn10a–/– mice than in wild-type mice, 
suggesting that SCN10A in humans acts to lengthen cardiac conduction, and that this SNP in SCN10A 
is a gain-of-function variant (39). Furthermore there is evidence that a cardiac enhancer in SCN10A 
interacts with and regulates the promoter of SCN5A, thus providing an explanation for how SCN10A 
genetic variants may affect conduction (40). 
 

Other genes causing CCD in structurally normal hearts 
 
Mutations in genes encoding other relevant proteins have been identified in families with 
conduction disorders, although these do not usually exhibit the progression with age seen in 
Lenègre-Lev syndrome. Often mutations at the same site may result in either purely functional 
conduction defects or may also be associated with dilated or restrictive cardiomyopathy or other 
structural defects. 
 

Connexins 

 
There are four connexin isoforms in the human heart, which have a regional distribution. Cx40 are 
found in large, Cx43 in medium, Cx45 in small and Cx31.9 in ultra-small conductance gap junction 
channels respectively (41). Mutations in connexins have been linked to abnormal cardiac activation 
and conduction disorders. A causal relationship between nucleotide substitutions in gene coding for 
Cx40 and progressive familial heart block has been demonstrated, with heterologous expression 
resulting in a reduction in junctional conductance and diffuse localization of Cx40 proteins at plasma 
membrane without formation of gap junctions (42). 
 

TRPM4  

 
There have been several descriptions of CCD in families in South Africa, with progressive RBBB and 
other conduction disturbances and a family history of SCD, which has been termed type I progressive 
familial heart block (PFHB) (43–45). A distinct clinical entity, PFHB type II was also characterized, 
with complete heart block but narrow complexes. A similar disease was prevalent in Lebanon, with 
conduction defects, especially RBBB, progressive over time (46,47). A number of microsatellite 
markers in the South African and Lebanese families have been mapped to chromosome 19q13.2-13 
(48,49). Subsequently, the genetic interval for the PFHBI disease locus has been defined, with a 



missense mutation in TRPM4 isolated as the cause of blunted cardiac conduction in several branches 
of a large Afrikaner family (50). TRPM4 encodes a Ca2+-activated channel (CAN) in in vitro expression 
systems (51) and has been suggested to contribute to the transient inward current (Iti) initiated by 
Ca2+ waves. The PFHBI-associated mutation, which results in an amino acid sequence change in the 
TRPM4 N terminus, was found to lead to constitutive SUMOylation of TRPM4 and impaired TRPM4 
endocytosis, resulting in a dominant gain of TRPM4 channel function (Figure 7).  
 
More recently, three more mutations in TRPM4 were reported in French and Lebanese families with 
PCCD (52). Functional experiments expressing these three mutant variants of TRPM4 suggested a 
similar gain-of-function phenomenon related to altered deSUMOylation. In another recent study 
(53), an additional six TRPM4 mutations in patients with RBBB and AV block were identified, but 
electrophysiological or biochemical studies have yet to be carried out in order to elucidate the 
potential mechanisms involved. Altogether, these recent studies strongly suggest that TRPM4 plays a 
key role in the pathogenesis of genetically determined conduction disorders. It may be that gain-of-
function mutant TRPM4 channels lead to cell membrane depolarization in the conduction system, 
thus reducing the number of available Na+ channels and resulting in the observed conduction 
abnormalities. 

 

KCNK17  

 
In a PCCD patient with idiopathic VF, whole exome sequencing has identified a missense mutation in 
the KCNK17 gene (54), which encodes the potassium (K+) channel TASK-4. A gain of function of TASK-
4-mediated current may reduce the availability of Na+ current by depolarizing the membrane of 
conduction system cells.  
 

CCD associated with structural cardiac defects 
 
Cardiac transcription factors are known to be critical in formation of the cardiac conduction system 
as well as cardiac septation and morphogenesis. It is thought that 10% of sporadic congenital heart 
disease involve de novo mutations which may affect cardiac conduction (55–57). For example, the 
molecular pathway involving TBX5, NKX2.5 and Id2 genes controls specification of ventricular 
myoctyes into the ventricular conduction system lineage (58) as well as formation of the cardiac 
chambers and endocardial cushions, and modifies gene expression of ion channel proteins that 
contribute to properties of conduction system and contraction of myocardium (59). Mutations have 
been linked to CCD associated with congenital heart disease (60). 
 

NKX2.5 

 
NKX2.5 (cardiac-specific homeobox) regulates proliferation of atrial working and conduction 
myocardium in coordination with the Notch pathway (61). NKX2.5 mutations have been identified in 
cases of CCD, and also Wenckebach conduction block, ventricular non-compaction and SCD. These 
cases are associated with septal defects (62) and a variety of other congenital heart defect 
phenotypes such as tetralogy of Fallot, truncus arteriosus, double outlet right ventricle, L-
transposition of great arteries, interrupted aortic arch and hypoplastic left heart syndrome (63–65). 
 

Tbx5 

 
Mutations in the gene encoding the T-box transcription factor Tbx5 have been found in 2 families 
with Holt-Oram syndrome (66). This syndrome has an autosomal dominant transmission pattern and 
may include radial ray upper limb abnormalities, cardiac septation defect and coarctation (67,68). A 



range of conduction disorders may be seen, such as sinus bradycardia or AV block, even in the 
absence of overt structural heart disease. Mutations in the TBX3 gene, which lies close to TBX5 on 
chromosome 12q24, result in ulnar-mammary syndrome. A case of contiguous deletions of both 
TBX5 and TBX3 displaying clinical features of both, had rapidly progressive cardiac conduction 
disease (69). 

 

Others 

 
An intact cytoskeleton is required for proper myocyte structure and is involved in cell signalling 
processes. Mutations in genes encoding cytoskeletal proteins can lead to cardiomyopathy or 
muscular dystrophy, an example being the LMNA A/C gene, encoding laminin. However, often the 
first and most prominent disease manifestation is isolated CCD, without or before the development 
of detectable structural cardiac abnormalities. It appears that mutations in cytoskeletal proteins 
directly or indirectly alter ion channel function. This is supported by recent studies showing that 
alpha-syntrophin interacts with the alpha-subunit of the cardiac Na+ channel, thereby regulating its 
membrane expression and gating behaviour (70). Interactions of cytoskeletal proteins with mutant 
Na+ channels may explain the exaggerated fibrosis seen in some cases of Lenègre-Lev syndrome 
(16,18). 
 
Mutations in PRKAG2 encoding an AMP-activated protein kinase, have been found in cases of both 
isolated CCD (71) and conduction disease with cardiac hypertrophy (72). These mutations may 
influence cardiac conduction by affecting the phosphorylation state of several cardiac ion channels; 
for example T172D that is known to affect the inactivation properties of the human cardiac Na+ 

channel in heterologous cell expression (73).  
 
Inborn errors of metabolism that affect normal transport and metabolism of fatty acids due to 
enzymatic defects may present as conduction disease and atrial arrhythmias without structural heart 
disease, although they can also be associated with cardiomyopathies. Usually, patients have defects 
in enzymes that regulate mitochondrial transport of long-chain fatty acids (74). The accumulation of 
fatty acid metabolites downstream from the enzyme defect cannot only be myotoxic, but may also 
influence ion channels. They have been shown to reduce the inward rectifying K+ and depolarizing 
Na+ current, to activate Ca2+ channels, and to impair gap-junction hemi-channel interaction (75). 
 

The role of common genetic variants 
 
Several GWAS have identified variants in multiple loci that show evidence of association with heart 
rate (37,76–78) (Figure 8). Although none of the heart rate loci have shown association with the risk 
of AV block, SSS, pacemaker implantation or sudden cardiac death individually, a higher genome-
wide polygenic score (GPS) was associated with reduced risk of SSS and pacemaker implantation. A 
range of approaches, including proteomics experiments and gene expression quantitative trait locus 
analysis, labelled 49 of the 234 genes located within the 21 loci as candidate genes for heart rate 
regulation (79). Experiments in animal models supported a role in heart rate regulation for 20 of the 
31 candidate genes tested, including ones that have a role in embryonic development 
(EPHB4, PLXNA2, PLD1and CALCRL), as well as those with a role in the pathophysiology of dilated 
cardiomyopathy, congestive heart failure and/or SCD (TTN, MFN1, CHRM2 andPLD1). These findings 
provide new insights into the mechanisms that regulate heart rate and may impact upon 
management strategies in future. 
 

Management of patients with inherited PCCD 
 



PCCD is diagnosed mainly in the presence of unexplained progressive conduction abnormalities in 
patients under 50. The index patient should have clinical data collected including history, family 
history, 12 lead ECG and an echo/MRI to investigate the presence of structural heart disease. Early 
onset PCCD in a structurally normal heart should trigger PCCD genetic testing (80).  
 
There is currently no genotype based risk stratification strategy, but with genotype positive patients 
there should be a low threshold for investigating symptoms or ECG findings. Patients should avoid 
drugs with conduction slowing properties and there should be active treatment of fever in SCN5A 
mutation carriers to minimise the risk of ventricular arrhythmias. A recent HRS/EHRA/APHRS expert 
consensus statement concludes that pacemaker implantation should be recommended in PCCD 
patients with either intermittent or permanent third degree and high grade AV block, or 
symptomatic Mobitz I or II second degree AV block (class I recommendation). PPM can be useful in 
PCCD patients with bifascicular block with or without first degree AV block (class IIa 
recommendation) (81). Targeted genetic screening of first degree relatives of a mutation positive 
PCCD patients is also recommended, to allow prospective follow up of asymptomatic mutation 
carriers. 
 

Conclusions 
 
There have been recent advances in the understanding of the development and pathophysiology of 
CCD, and in particular in the genetic backgrounds behind rare forms of familial PCCD. A large number 
of genes have been linked to cardiac conduction disorders. Genotype-phenotype correlations have 
demonstrated that PCCD is associated not only with aging, but also processes that lead to AV block 
and intra-ventricular block. Once more is known regarding the genetic pathways determining cardiac 
conduction, genetic analysis may become a routine part of management, with gene-mutation based 
risk stratification helping to determine optimal timing for pacemaker implantation. Mechanistically 
driven preventative strategies might also be employed to slow the development of the disease e.g. 
to modulate transcription or improve ion channel trafficking. 
 

Atrial fibrillation 
 
AF is the most common cardiac arrhythmia, estimated to affect 1-2% of the UK population. Its 
prevalence is increasing and is estimated to have doubled by 2040 (82,83). The most serious chronic 
sequelae of AF include stroke, heart failure, and dementia with devastating effects on an individual’s 
health and high socio-economic costs (84). 
 
The increased incidence of AF is driven partly by ageing populations, but other factors are also 
implicated. Although hypertension remains the most well described risk marker, metabolic factors 
also play a part. Investigators of the Framingham Heart Study estimated that obesity was associated 
with a 50% increase in risk of AF (85).  A linear association has been reported between BMI and AF 

and short-term increases in body mass contributed substantially to risk of AF (86). Although some of 
the effects of obesity might be haemodynamic (eg, through impaired ventricular relaxation or atrial 

stretch), more direct metabolic effects seem likely (85,86). Diabetes is also independently associated 

with AF (87). Epidemiological data for prevalence of AF in racial groups and various geographical 
locations provide evidence of intrinsic (presumably genetic) interactions. Black people have a higher 
prevalence of hypertension and metabolic disease but a lower incidence of AF than a comparable 
white population (88). 
 
AF is a clinically and genetically heterogeneous condition, which can be thought of as representing 
the final common phenotype of multiple diverse pathways. Conditions that promote AF involve atrial 



structural, electrical and autonomic abnormalities and/or remodelling that lead to re-entry or 
triggered activity (89). Slow conduction velocities and short effective refractory periods (ERP) allow 
the establishment and stabilization of multiple re-entrant circuits (Figure 9). Delayed 
afterdepolarizations (DAD) emerge from abnormal Ca2+ release from the sarcoplasmic reticulum 
during diastole, acting as triggers for re-entry or, when sustained, as a focal source for AF (90,91). 

 

AF as a monogenic disease 
 
If AF occurs in the absence of any obvious predisposing factors it is known as ‘lone AF’ (92). Lone AF 
can be thought of as a primary electrical disease caused by changes in ionic currents. It was in fact 
first reported in a family in 1943 (93), and it is estimated that 5% of pts with AF and up to 15% of 
individuals with lone AF may have a familial form (94). There have been significant advances in the 
last 10 years in investigating the genetic elements of AF, with data from the Framingham study and 
Icelandic population showing that parental AF leads to a relative risk of AF in offspring of 4.7, if 
parents are affected before 60 years (95,96). The risk of developing lone AF at young age increases 
with the  number affected of relatives with lone AF and decreasing age at onset in family members 
(97). While this may of course reflect common exposure to environmental factors, it is likely that 
genetic susceptibility plays a significant role (94–96,98,99). 
 
Various AF loci and genes with large effect sizes in AF kindreds have been identified in positional 
cloning and linkage analyses. The first AF locus was discovered in 1997 (100); to date, mutations in 
over 25 genes have been associated with AF, including those encoding cardiac gap junctions, 
signalling molecules, ion channels and accessory subunits (Table 1). Gain or loss of function 
mutations in genes encoding proteins controlling cardiac depolarization or repolarization can 
increase susceptibility to AF (Figure 10). Cardiac APD shortening has been shown to lead to re-
entrant wavelets (101,102), whilst prolonging the ERP enhances the likelihood of early 
afterdepolarsiations (EADs) (103,104). Interestingly, both gain and loss of function mutations in the 
same gene can cause AF. 
 

Genes associated with AF 
 

Potassium channel mutations 

 
One model proposed for AF pathogenesis describes reduced atrial ERP as a substrate for re-entrant 
arrhythmias (101). This model is supported by reports of gain-of-function mutations in genes 
encoding subunits of cardiac ion channels responsible for generating repolarising K+ currents; these 
mutations are predicted to decrease atrial APD and, therefore refractoriness. Familial AF has been 
associated with mutations in KCNQ1, which encodes the pore-forming alpha subunit of the cardiac 
K+ channel Iks. In one mutation, functional studies have demonstrated an increase in current density, 
along with altered gating and kinetic properties, which results in shorter APD and ERP (105). Other 
gain of function mutations have also been described (106,107). Another gain of function mutation in 
KCNQ1 has been identified with high penetrance in 5 different families with early onset AF, which 
also leads to an abnormal QTc, syncope and SCD (108).  
 
KCNE1-5 encodes the regulator beta subunits of IKs, and mutations in these genes resulting in gain 
of function of IKs have been identified in families with AF (KCNE1: (109), KCNE2: (110), KCNE3: (111), 
KCNE4 (112), KCNE5: (113)). KCNH2 encodes the alpha subunit IKr; mutations in this gene resulting 
in increased IKr have been related to Short QT Syndrome (SQTS) and AF (112,114,115). 
 



KCNJ2 encodes the inward rectifier channel Kir2.1 responsible for the IK1 current, which determines 
the late phase (3) of repolarisation and maintains the resting membrane potential (phase 4). 
Missense mutations causing gain of function have been identified in a Chinese family with AF (116). 
KCNJ8 encodes the cardiac KATP channel Kir6.1, which controls a non-voltage-gated inwardly 
rectifying K+ current, and leads to shortened APD under conditions of metabolic stress (117). A 
missense mutation causing gain of function (118) has been identified in a cohort of lone AF patients 
(117).  
 
The KCNA5 gene encodes the atria specific Kv1.5 channel which plays a role in the ultra-rapid 
delayed rectifier K+ channel IKur involved in cardiac repolarization. A deletion in a kindred with early-
onset lone familial AF (119) disrupts a proline-rich motif involved in tyrosine-kinase regulation of IKur, 
and renders the channel kinase-resistant. The precise mechanism for AF in this kindred is not 
certain, and might involve gain-of-function or loss-of-function of IKur but importantly, this study 
established the tyrosine-kinase signalling pathway as a potential therapeutic target in AF. A 
nonsense mutation causing loss of function has been identified in a familial case of AF (120), leading 
to APD prolongation and EADs. These data also predicted increased vulnerability to stress-induced 
triggered activity, and carriers of this KCNA5 variant were prone to develop AF when challenged with 
isoproterenol (120). This postulated mechanism for increased susceptibility to AF is supported by 
two studies in which investigators discovered loss-of-function mutations in KCNA5 in patients with 
lone AF (103,121). Therefore, AF-associated mutations are likely to trigger AF by multiple 
mechanisms other than shortening of the atrial APD (122,123).  The high prevalence of early-onset 
AF in patients with congenital long QT syndrome also supports a similar mechanism for AF in these 
patients (124). 
 
Lastly, the ABCC9 gene encodes the SUR2A KATP channel subunit, which provides electrical stability 
under stress, including adrenergic challenge. A missense mutation causing loss of function has been 
identified in a case of early onset AF originating from triggers in the vein of Marshall (125). 

 

Na+ channel mutations 

 
As mentioned above, the SCN5A gene encodes the alpha subunit of the cardiac Na+ channel which 
controls the INa current involved in cardiac depolarization. Rare variants in SCN5A have been 
identified in a familial form of AF, several of which cause overlapping phenotypes with 
cardiomyopathy (126). 8 mutations in SCN5A have been seen in a cohort of lone AF patients, leading 
to decreased transient peak current and increased sustained current  (127). Both gain or loss of 
function alterations in cardiac Na+ current can be involved in early onset AF. 
 
SCN1B-4B encodes modifying beta subunits of the cardiac Na+ channel. Loss of function mutations 
have been found in cohort of AF patients (SCN1B and SCN2B: (128), SCN3B: (129), as well as in 
patients with BrS (130). SCN1Bb encodes the second beta1 transcript, Navbeta1B. A missense 
mutation has been found in patients with lone AF and with BrS (131), resulting in decreased peak 
Na+ current and increased Kv4.3 transient outward current. (132). 
 

Non-ion channel mutations 

 

Table 1 also summarises known genes other than ion channels associated with AF. The NUP155 gene 
on chromosome 5q13 76 encodes nucleoporin, a component of the nuclear pore complex involved 
in nucleo-cytoplasmic transport. An AF locus has been mapped to chromosome 5q13 in a large AF 
family with autosomal recessive inheritance (133), which was then identified as NUP155 (134). A 



homozygous mutation was seen in all affected family members, and heterozygous knock-out (KO) 
mice also demonstrated an AF phenotype. 
 
NPPA encodes ANP, a circulating hormone produced in cardiac atria involved in BP regulation 
through natriuresis, diuresis and vasodilation (135). In a family with an autosomal dominant pattern 
of AF, a heterozygous frameshift mutation in NPPA co-segregated with AF, and the mutant peptide 
shortened the atrial APD and ERP in a rat heart model (136). A novel missense mutation in NPPA also 
co-segregates with early onset AF (137).  
 
GATA4 and GATA6 genes encode cardiac transcription factors. They work synergistically with NKX2-5 
in regulation of target gene expression, especially cardiogenesis (138). A GATA4 mutation has been 
identified in lone AF (139). Other studies have shown GATA4 mutations which co-segregate with AF, 
and lead to a decreased transcriptional effect (140–142). 2 heterozygous GATA6 mutations in 2 of 
110 probands with familial AF co-segregated with AF in an autosomal dominant pattern, and were 
also associated with congenital cardiac defect in 3 AF patients (143). Other studies have shown 
mutations in GATA6 which co-segregate with AF and lead to decreased transcriptional activity 
(144,145). 
 
The LMNA gene, mentioned above in conjunction with PCCD, encodes lamin A/C, an intermediate 
filament protein associated with inner nuclear membrane. A heterozygous missense mutation in 
LMNA have been seen in a family with AF as well as SVT, VE, muscle weakness and SCD (146). Two 
further variants have been identified in 2 probands with AF, one with episodes of AV block, the other 
with reduced LV function, LBBB and a family history of heart disease (147). 
 
The critical role of PITX2 in the development of the pulmonary myocardium (see more below) has 
led investigators to examine other developmental genes important for atrial differentiation and 
cardiac development. A novel interaction was identified between AF and a rare variant (Q76E) within 
the coding region of gremlin-2 (GREM2; an antagonist of bone morphogenetic protein), which 
increases its inhibitory activity and cardiac development (148). In a Zebra fish model GREM2 is 
required for cardiac laterality and atrial differentiation, and GREM2 over-activity results in slower 
cardiac contraction and lower contraction velocity. BMP is regulated by PITX2, and it is possible that 
GREM2 acts as an upstream regulator. 
 
Another mechanism by which rare ion-channel and signalling-molecule variants might increase 
susceptibility to AF is through abnormal and heterogeneous disturbance of cell-to-cell impulse 
propagation. GJA1 and GJA5 genes encode connexin 43 and connexin 40. Four heterozygous 
missense mutations in GJA1 have been identified in families with AF (149). A frameshift mutation in 
GJA5 leading to a protein–trafficking defect not present in lymphocyte DNA i.e. genetic mosaicism, 
causes failure of electric coupling between cells and has been associated with familial AF (150). 
Germline mutations have also been identified in GJA5 in patients with lone AF, and impairment of 
cell-to-cell communication has been confirmed in functional studies (151–153). Furthermore, 
common polymorphisms in the promoter region of GJA5 have been associated with AF, and 
functional studies showed that this promoter haplotype was associated with reduced luciferase 
activity, which is indicative of cardiac conduction heterogeneity (154) and decreased activity of two 
transcription factors: Sp1 and GATA-4 (155). These data suggest that rare genetic variants in 
connexin-40 modulate expression of this gap-junction protein, with reduced expression causing 
impaired electrical cell-to-cell communication and creating conduction heterogeneity and a 
substrate for AF maintenance.  
 

The role of common genetic variants 
 



The aim in the use of GWAS is to validate genetic markers for the population and assess how 
accurately these can differentiate patients from controls. Rare variants usually exhibit a large effect, 
result in early-onset AF and show Mendelian inheritance. Candidate SNP studies examine a small 
number of SNPs suspected to associate with the disease and use known biology. Genome wide 
association studies (GWAS) have shown that common SNPs have a role in the development of AF 
(Table 2). As of 2014, nine SNPs had been associated with AF and may allow elucidation of biological 
pathways and the genetic component of the more common forms of AF (Figure 11). Huge sample 
sets are needed to establish deleterious or protective rare variants. By increasing sample size, the 
AFGen Consortium (www.afgen.org) have recently identified 12 more loci for AF. Further studies 
from large sample sizes are underway currently and the NHLB1 TOPMed program for Whole 
Genome Sequencing in early-inset AF is also in progress.  
 
From these studies, functional groups can be seen, with variants in transcriptions factors, ion 
channels and related proteins and known myocyte proteins associating with AF. None of the GWAS 
hits are in amino-acid coding regions of genes. It would appear that they act instead as regulators of 
adjacent genes, possibly to alter the function of a promotor or enhancer, leading to up or down 
regulation of downstream processes. Work is needed to correlate GWAS hits with mRNA expression 
of genes located in the proximity of regions of SNPs. It should be remembered that the top hits from 
GWAS are not necessarily disease causing variants and GWAS hits may be in high linkage 
disequilibrium with low frequency variants (156). 

 

4q25 locus 

 
The first SNP identified identified by GWAS was rs2200733 (Figure 12), located in proximity of gene 
PITX2 on chromosome 4q25 and highly associated with AF (157). The PITX2 gene encodes the 
paired-like transcription factor PITX2. In the human heart, PITX2c is the major isoform expressed 
(158) and is involved in the control of asymmetric cardiac morphogenesis (157). A genetic variant on 
chromosome 4q25 has been associated with altered levels of PITX2 transcripts in  left atrial (LA) 
tissue samples (159) and the role of PITX2 in the development of LA has been demonstrated in a KO 
mouse model (160). It is thought to be required for the development of a sleeve of cardiomyocytes 
extending from the LA to the initial potion of the pulmonary veins (161). This would fit with the 
known anatomical substrate for AF of ectopic foci from within PVs and posterior LA initiating and 
maintaining AF (162), and the basis of current strategy of pulmonary vein isolation as the 
cornerstone for ablation treatment (163).  
 
Heterozygous KO PITXx +/- mice have normal cardiac morphology and function, but the expression 
of Ca2+ ion binding proteins, gap and tight junction and ion channels are altered, as well as showing 
differential expression of genes in Wnt signalling, a key fibrosis signalling pathway, with increased 
expression of collagen and extracellular matrix genes. Isolated mouse hearts go into AF during 
programmed pacing, showing shortened APDs and ERPs (164) (Figure 13). Human studies have 
shown that PITX2c expression is decreased in patients with persistent AF (165). There is much still to 
learn about PITx, including the mRNA levels in atrial tissue and target proteins. 
 

Variants modulating cardiac ion channels 

 
Several AF-susceptibility loci encoding cardiac ion channels have been identified. These include the 
K+/Na+ hyperpolarization-activated cyclic nucleotide-gated channel gene HCN4 on chromosome 
15q24, which encodes the cardiac pacemaker channel responsible for the funny current, and which 
as described above has been linked with sinus node dysfunction. The gene is expressed in most of 
the conduction system and is the predominant isoform of primary pacemaker in mouse hearts (166). 
Rs13376333 is found on chromosome 1q21 in the KCNN3 gene, which encodes the small 
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conductance Ca2+-activated K+ channel and is involved in atrial repolarization. Rabbit burst-pacing 
models which aim to mimic ectopic PV foci have shown that PV and atrial APDs are shortened, an 
effect inhibited by apamin which is known to block Ca2+-activated K+ channels (167).   
 
Rs3807989 is found close to the caveolin-1 gene CAV-1 on chromosome 7q31, which encodes a 
cellular membrane protein selectively expressed in the atria and involved in signal transduction. This 
is expressed in atrial myoctyes, and is needed for the development of caveolae involved in electric 
signal transduction (168). CAV1 KO mice have dilated cardiomyopathy and pulmonary hypertension 
(169). Importantly, the caveolin-1 protein co-localises with, and negatively regulates the activity of, 
KCNH2 protein, a K+ channel involved in cardiac repolarization, and KCNH2 has been associated with 
AF in a candidate-gene association study (170). 

 

GWAS loci with potential links to atrial fibrosis 

 

In 2009, two separate groups identified common risk alleles on chromosome 16q22 that associated 
with AF (OR 1.1–1.2).  Both SNPs are close to the gene that encodes the zinc finger homeobox 
protein 3 (ZFHX3). Similarly to PITX2, ZFHX3 (also known as AT motif binding-factor 1) is a 
transcription factor that regulates skeletal muscle and neuronal development, with variable 
expression in many tissues, including the heart (171). Interestingly, ZFHX3 regulates the transcription 
of the POU1F1 gene (encoding POU class 1 homeobox 1), which not only facilitates DNA binding, but 
also modulates transcriptional activity of PITX2 (172). ZFHX3 might also mediate its effect on the risk 
of AF by modulating oxidative stress (173). The gene associates with runt-related transcription factor 
3 (RUNX3), which translocates in response to TGF-beta signalling and is an important fibrosis 
mediator (174,175). It might therefore increase susceptibility to AF by modulating pathways to 
increase inflammation and oxidative stress, which are important in pathogenesis of AF (176). 

Rs3903239 is found on chromosome 1q24, 46kb upstream from PRRX1, which encodes a 
homeodomain transcription factor which is highly expressed in developing heart (177). Studies in KO 
mice show that PRRX1 is needed for normal development of great vessels and lung vascularization, 
and is linked to pulmonary and liver fibrosis (37,178). 
 
SYNE2 encodes nesprin-2 that, with nesprin-1, forms a network in muscle linking the nucleoskeleton 
to nuclear membrane structures and the actin cytoskeleton (179). α-Catenin interacts with nesprin-2 
and emerin to regulate Wnt signalling-dependent transcription, a pathway implicated in fibrosis in 
the heart, kidney, and lung (180,181). Rs1152591 is found on chromosome 14q23 in the intron of 
gene SYNE2. Mutations are found in families with Emery-Dreifuss muscular dystrophy, who present 
with cardiomyopathy and cardiac conduction defects (177,182). Rs10821415 is in an open reading 
frame on chromosome 9, near to genes FBP1 and FBP2, which are involved in gluconeogenesis (177), 
although a further link has not yet been made. Rs10824026 is found on chromosome 10q22, 5kb 
upstream of SYNPO2L (177), which encodes the cytoskeletal protein CHAP (cytoskeletal heart-
enriched actin-associated protein). This is highly expressed in the Z-disc of cardiac and skeletal 
muscle and play an important role in skeletal and cardiac muscle development. Knock-down of this 
gene in zebrafish causes aberrant cardiac and skeletal muscle development and function (183). It has 
been shown to be a susceptibility locus for AF in a family with autosomal dominant AF (100). 
 
Taken together, there considerable evidence suggests that many common AF-susceptibility variants 
have the potential to modulate atrial fibrosis. Additionally, all these risk variants are likely to 
mediate their effect not only by regulating atrial conduction slowing, but also by modulating 
electrical remodelling processes that promote AF, such as shortening of the ERP. 



Two hit hypothesis 

 
Most patients with AF have one or more identifiable risk factors, such as hypertension or structural 
heart disease; however, many patients with these risk factors do not develop AF. Thus one might 
hypothesise that genetic determinants increase AF susceptibility in some individuals with other 
identifiable risk factors (genetic or acquired). In early GWAS, patients with non-familial AF were 
compared with controls and a small number of variants in candidate genes previously implicated in 
AF pathogenesis were tested. Subsequently, the GWAS paradigm of surveying the whole genome 
has been used successfully to identify new genomic loci contributing to AF susceptibility. For 
example, the risk of developing AF markedly increases (odds ratio [OR] 12–26) when a rare AF 
variant interacts with common AF risk alleles at the 4q25 locus (184). Therefore, these data support 
the idea of a 'two-hit' hypothesis—the combination of a genetic variant with additional risk factors, 
such as left atrial dilatation or other genomic variants, is important in AF pathogenesis (Figure 14) 
(185). 

 

Bioinformatics 
 
Exome data from NHLBI GO Exome Sequencing Project (ESP) (Seattle, WA, USA, URL. 
http://evs.gs.washington.edu/EVS/) reveals genetic variation in the general population. It uses next 
generation sequencing (NGS) of DNA from 6500 unrelated people recruited from different 
population studies, and is therefore representative of genetic variation in healthy subjects (127). 
Rare variants associated with AF are mostly not present in the ESP population ie the variants are not 
random findings, but are disease-causing (186). This is in contrast to studies showing that mutations 
previously thought to be disease causing in LQTS, sudden infant death syndrome (SIDS) and BrS 
show high prevalence in the ESP population and therefore may not in fact be disease causing (187–
189). 
 

Genetic overlap with other cardiac diseases 
 
There is a large overlap between different genes involved in arrhythmic disease such as LQT, BrS, 

SQTS, SIDS, cardiomyopathy and AF. Indeed, most of the genes associated with AF are also 

associated with other arrhythmic diseases (Table 3). 9 genes associated with AF have not been 

associated with other arrhythmic diseases (KCNE4, KCNA5, SCN2B, NUP155, GJA5, GATA4, GATA6, 

NKX2-5 and GREM2). These may be specific for AF, but another possibility is that these cohorts have 

simply not been examined yet. Patients with genetically proven SQTS or LQTS have a higher risk of 

early-onset AF (190,191). Early-onset AF occurs in 2% of patients with genetically proven LQTS as 

compared with a background prevalence of 0.1% (190). In general, both shortened and prolonged 

QTc appear to be risk factors for AF, and especially lone AF (192).  

 

Genetic testing in AF 
 
A recent HRS/EHRA expert consensus document has set out recommendations for genetic testing in 
channelopathies and cardiomyopathies (80). Genetic testing is currently not indicated for AF as none 
of the known disease associated genes account for more than 5% of cases. Furthermore, there are 
no clear links between SNPs and clinical outcome. 
 
A novel risk prediction model using data from 20,822 women without cardiovascular disease at 
baseline has been constructed (193). This generates a genetic risk score using the 9 loci known to be 
common variants. Adding this genetic score to an AF risk algorithm improves the predictive accuracy, 
and may pave the way for the use of common variants for risk stratification. This may be a practical 



possibility with the advent of NGS, where the whole genome can be sequenced in a few days. This 
could lead to a personalized medicine approach, where specific variants could potentially predict 
whether the patient will elicit a response to a specific drug.  
 
 

Role of genomics in therapy for AF 
 
First line therapy for AF usually comprises anti-arrhythmic drugs, with a proportion of symptomatic 
patients selected for catheter ablation. Several factors contribute to the considerable variation in 
treatment options available – a lack of mechanism based and reliable effective treatments, together 
with adverse effects of both pharmacological and ablation therapy. Studies comparing rhythm and 
rate control have so far failed to show a survival benefit, and therefore there is an argument that 
there is no rationale in maintaining sinus rhythm if the patient has minimal symptoms (194). 
However, maintaining sinus rhythm still has a role to play in the cases of symptomatic individuals, 
and large prospective studies now recruiting, may show a survival benefit including the prevention 
of progressive heart failure and stroke. Identifying genes responsible for AF will help understand its 
pathophysiology, especially in terms of heterogeneity of substrate and differences in disease 
mechanisms. Results from prospective, adequately powered, genotype directed clinical trials may 
allow us to then target therapy to the underlying molecular AF mechanisms in an individual patient, 
rather than relying on empiric approaches. Tailored therapy will lead to improved efficacy and 
reduced risk of adverse effects.  
 
The response to drug therapy is highly variable between patients and there is currently little data to 
base selection of antiarrhythmic drugs in a particular individual. There is a lack of well-defined end 
points to measure efficacy of treatment. Often time to first symptom is used, but this correlates 
poorly with frequency of symptomatic episodes, and is unable to assess asymptomatic episodes. 
Limitations in continuous ambulatory monitoring technology has led to practical difficulties in 
assessing AF burden, but this is now easier with new miniaturised technology (195,196). 
 
Genetic factors have an important role in modulating drug responses. For rare ion-channel and other 
variants there are clear possible therapeutic implications. For example, in gain of function K+ 
mutants, K+ channel blockers such as sotolol might be employed. Equally, Na+ channel blockers 
should be avoided if there is a loss-of-function variant in the Na+ channel or its modifiers. However, 
although these mutations have a large effect size, they are rare and therefore the effects not widely 
applicable. 
 
Common variants identified by GWAS have a greater aggregate effect, with combinations 
modulating AF risk. There have been few studies of genomic predictors of response to therapy, and 
they have been limited by being retrospective and of small sample size, meaning few results have 
been independently validated (Table 4). Reference 4q25 genotype has been independently 
associated with an improved response to class I or II antiarrhythmic drugs (OR 4.7). Beta1-adrenergic 
receptor polymorphisms (Arg389Gly) are significantly associated with inadequate ventricular rate 
control (OR 1.44) (197). Loci with multiple SNPs associated with failure to response to 3 of more AV 
blocking drugs have been identified in 3 genes: MYO7A, SOX5, LANCL2. SOX5 codes for a 
transcription factor involved in the regulation of embryonic development and cell fate and is 
expressed in the heart. GWAS data have implicated SOX5 polymorphisms as PR modulators (198). 
 
The NIH Pharmacogenomics Research Network (199) has recruited a large number of patients with 

well-characterized drug-response phenotypes. One project within the network is to establish a DNA 

repository for the large Catheter Ablation Versus Antiarrhythmic Drug Therapy for Atrial Fibrillation 

(CABANA) trial, in which two major approaches for the management of AF—ablation and drugs to 



maintain sinus rhythm—will be compared. Thus will hopefully allow investigators to address 

questions such as which patients are most likely to respond to, or develop complications with, 

ablation or drug therapy. 

The Fire and Ice study (200) compared cryoballoon ablation and RF ablation. One clear point was 
that despite advances in technology and over 15 years’ experience, recurrence rates have not 
dramatically fallen. The well-established parameters for determining ablation strategy include 
clinical presentation of AF, length of time in AF, LA diameter and presence of low voltage regions. 
However, genetic factors may help us better understand mechanisms for AF recurrence and 
therefore selection criteria for listing for ablation and allow a personalized approach in ablation 
strategy. 
 
Using a candidate SNP approach, AF susceptibility alleles have been examined to identify which may 
potentially be associated with recurrence of AF after ablation. The main 3 loci which have been 
studied are 1q21/KCHN3, 4q25/PITX2 and 16q22/ZFHX3. No overall effect on recurrence has been 
found with 1q21/KCHN3 or 16q22/ZFHX3, with different effects seen depending on the cohort 
(201,202). 3 SNPs have been found at the 4q25/PITX2 locus - rs10033464, rs2200733, rs6843082. Of 
these, the rs2200733 has shown a significant association with AF recurrence in several European 
studies (202–204) but not in a Korean study (201). 
 
There are several potential mechanisms for AF recurrence, including non-PV triggers, LA remodelling 
and PV sleeve reconnection. The current cornerstone for AF ablation is PVI, so those patients with 
non-PV triggers are likely to have worse outcomes as the procedure has not addressed the 
underlying mechanism for their arrhythmia. Mohanty et al (205) tested 400 AF patients for an 
association between candidate panel of 16 SNPs and non-PV triggers. 2 SNPs were associated with a 
lower risk of non-PV triggers, those at the SCN5A and 4q25/PITX2 loci, and 2 with a higher risk - 
4q25/PITx2 and ZFHx3.  SNP 16q22 was associated with ectopic foci in the SVC in paroxysmal AF but 
not persistent AF, with a specificity of 97% in a single centre Japanese centre. PVI sleeve 
reconnection is a leading cause of recurrence of AF following ablation; however so far no studies 
have specifically examined genetic variants potentially associated with this. SNPs might also be 
independent predictors of AF recurrence after DCCV, with 4q25 SNPs showing higher recurrence of 
AF after DCCV. 
 
The presence of LA fibrosis is also associated with poorer outcome following AF ablation (206), again 
because PVI does not address the issue of substrate in the rest of the LA. There have been several 
studies mostly in individual cohorts, with candidate genes involved in LA remodelling/fibrosis 
including ACEI/D (207,208), CYP11B2 (208), AGT (209), IL6R (210), eNOS3 (211) and EPHX2 (212).  
ACE I/D polymorphism may be the most promising, as it was found to be significant in both 
European and Asian cohorts. 
 

Conclusion 

 
Various rare, mostly 'private' genetic variants affecting only a single kindred that encode diverse ion-
channel and signalling proteins have been found to increase the risk of developing AF through 
distinct genetic mechanisms. This diversity is likely to contribute to the genetic heterogeneity of AF 
and the differential response to therapies. The extent to which genetic variants, or combinations of 
genetic variants with variable penetrance determine susceptibility to AF is an area of active 
investigation. 
 
Positional cloning and candidate-gene approaches have provided novel insights into the genetic 
mechanisms of AF, and since 2007 several GWAS have identified further genetic loci and genes 



implicated in AF. However, there is a disconnect between identifying genes and elucidating their 
mechanism. Indeed, some might argue that finding a GWAS is relatively straightforward, but 
determining function is not. The challenge now is to move from association to mechanism.  

Current literature on genetic variation and AF ablation outcome is predominantly focused on 
common variants. Most studies have reported small or modest effect sizes and some contradictory 
findings. Previously reported associations need replication in larger cohorts of both European and 
non-European ancestries. Using additional genetic information could allow risk stratification based 
on pre-procedural characteristics to determine which patients are most likely to benefit, and 
tailoring ablation/drug/ablation-drug hybrid strategy for an individual patient. The development of 
genetic risk scores will likely be needed to clinically utilise common variant data. A large scale GWAS 
focused on AF recurrence after ablation may be useful to discover new genetic loci and determine 
the relative effect of SNPs on AF recurrence. From this, once we have a better understanding of the 
genetic basis of AF, we can translate this genetic knowledge to the care of patients. Critically, this 
should include assessment of how combinations of clinical and genetic factors predict development 
of AF and to what extent genomic variation adds to ordinary predictors such as hypertension or 
ischaemic heart disease. 
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Tables 
 

Table 1: Atrial Fibrillation Genetic Variants Identified in Families and Individuals. From Tucker and 

Ellinor (213). 

Gene Gene Name Function Citation(s) 

ABCC9 ATP-binding cassette, subfamily C, 
member 9 

IKATP current (214) 

GATA4 Transcription factor GATA-4 Cardiac development (116,170,182,215)  

GATA5 Transcription factor GATA-5 Cardiac development (117,182,216)  

GATA6 Transcription factor GATA-6 Cardiac development (217–219) 

GJA5 Connexin 40 Formation of atrial gap 
junctions 

(119,193,220–223) 

GREM2 Gremlin-2 BMP antagonist (224) 

HCN4 Hyperpolarization activated cyclic nucleotide-gated K+ 

channel 4 

If current (225) 

JPH2 Junctophilin-2 Ca2+ homeostasis (226) 

KCNA5 K+ voltage-gated channel, shaker-related subfamily, 

member 5 

IKur current (125,143,145,149) 

KCND3 K+ voltage-gated channel, Shal-related subfamily, member 3 Ito1 current (140) 

KCNE1 K+ voltage-gated channel, Isk-related family, member 1 Kv channel activity 
modulation 

(139) 

KCNE2 K+ voltage-gated channel, Isk- related family, member 2 Kv channel activity 
modulation 

(153) 

KCNE3 K+ voltage-gated channel, Isk- related family, member 3 Kv channel activity 
modulation 

(227) 

KCNE5 KCNE1-like Kv channel activity 
modulation 

(228) 

KCNH2 K+ voltage-gated channel, subfamily H (eag-related), 

member 2 

IKr current (80,229) 

KCNJ2 K+ inwardly-rectifying channel, subfamily J, member 2 IK1 current (141,142) 

KCNJ5 Potass K+ ium inwardly-rectifying channel, subfamily J, 

member 5 

IKACh current (230) 

KCNJ8 K+ inwardly-rectifying channel, subfamily J, member 8 IKATP current (231) 

KCNQ1 K+ voltage-gated channel, KQT- like subfamily, member 1 IKs current (105,107,232–236) 

LMNA Lamin A/B Nuclear envelope 
structure 

(237,238) 

NKX2.5 Homeobox protein Nkx2.5 Cardiac development (113) 

NPPA Natriuretic Peptide Precursor A Systemic sodium 
homeostasis 

(197,239) 

NUP155 Nucleoporin 155 Nuclear pore formation (240) 

PITX2c Paired-like homeodomain 2c Great vein development, 
left right asymmetry 

(114) 

RYR2 Ryanodine Receptor 2 Ca2+ release from 
sarcoplasmic reticulum 

(241) 

SCN1B Na+ channel, voltage-gated, type I, beta subunit INa current modulation (103,242) 

SCN2B Na+ channel, voltage-gated, type II, beta subunit INa current modulation  (103) 

SCN3B Na+ channel, voltage-gated, type III, beta subunit INa current modulation (120,121) 

SCN4B Na+ channel, voltage-gated, type IV, beta subunit INa current modulation (225) 

SCN5A Na+ channel, voltage-gated, type V, alpha subunit INa current (148,151,152,243–
245) 



 

 
Table 2. Genes associated with AF through GWAS studies 
 

Transcription 
factors 

Ion 
channels 
and 
related 
proteins 

Known 
myocyte 
proteins 

Others 

PITX2 KCNN3 MYOZ1 C90RF3 

PRRX1 HCN4 TTN SYNE2 

ZFHX3 CAV1/2 PLN CAND2 

TBX5 GJA1  NEURL 

CUX2 KCNN2  METTL11B 

WNT8A SCN5A  ANXA4 

 KCNJ5  CEP68 

   THRB 

   ASAH1 

   HSF2/SERINC 

   SH3PXD2A 

 
 
Table 3. Genes implicated in overlap syndromes. 
 
      

 LQTS BrS SQTS SIDS Cardiomyopathy 

KCNQ1 (189)   (189) (186)  

KCNE1 (189,246)   (186)  

KCNE2 (189,246)   (186)  

KCNE3 (189,246) (247)    

KCNE5  (248)    

KCNJ8    (186)  

KCNH2 (189) (249)  (189) (186)  

KCNJ2 (189)   (189)   

KCND3  (250)    

SCN5A (189) (251)  (186) (126) 
SCN1Bb  (131)  (186)  

SCN3B  (252)  (186)  

ABCC9     (253) 
NPPA     (254) 
LMNA     (187) 
GJA1    (186)  

 

  



Table 4. Common genetic polymorphisms that modulate the response to therapies for AF. From 
(255)Darbar and Roden. Nat Rev Cardiol. 2013 Jun; 10(6): 317–329.. doi:  10.1038/nrcardio.2013.53  

 
 

 Gene or SNP Results Replicated? Reference 

Rhythm 
control 
therapy 

Angiotensin-converting enzyme 
I/D 

D/D and I/D – increased AF 
recurrence after drugs  

No (256) 

 Beta1-adrenergic receptor 
polymorphisms (G389R, S49G) 

Arg389Arg – increased flecainide 
potency and increased HR during 
AF 

Yes (257) 

 4q25: rs2200733, rs100334464; 
16q22: rs7193343; 1q21: 
rs13376333 

Re10033464 – increased AF 
recurrence after drugs 

Yes (197) 

 4q25: rs2200733, rs100334464 Any variant allele – increases early 
or late AF recurrence after 
ablation 

Yes (237,258) 

 4q25: rs2200733, rs100334464; 
16q22: rs7193343; 1q21: 
rs13376333 

Any common SNP increases AF 
recurrence after DCCV 

No (238) 

Rate 
control 
therapy 

Beta1-adrenergic receptor 
polymorphisms (G389R, S49G) 

G389R - better rate control Yes (231) 

 

 
 
 
  

http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=23591267
http://dx.doi.org/10.1038%2Fnrcardio.2013.53


Figures 
 
 
 

 
Figure 1 Allele frequencies and risk in families and populations. From Darbar and Roden (255).  

 
 
 

 
 
Figure 2. Integrating disease model paradigms to translational outputs in inherited disorders. From 
Grace and Roden (84).  

 

 
 
Figure 3. Gap junction structure.  
 



 

 

Figure 4. A Pedigree of the French family identified by Schott et al. Patients with an unknown status 
(stippled) were not included in the linkage study. Individuals carrying the mutation are indicated (+), 
as are patients with a pacemaker (PM). B. Representative ECGs from the French family. Patient II-1 
had an unspecified conduction defect (QRS duration 120 ms) at age 60, but at age 72 had left 
anterior hemi-block with wide QRS complexes and a long PR interval (240 ms). ECGs from patients II-
7, III-17 and IV-18 show complete LBBB, complete RBBB and left posterior hemi-block, respectively. 
Adapted from Schott et al (11).  
 
 

 

 
Figure 5. Location of identified SCN5A mutations that result in conduction system disease. *common 
polymorphism. Adapted from Moric et al (259). For complete updated list of SCN5A variants 
associated with PCCD see http://www.fsm.it/cardmoc/ 

 
 



 

 

Figure 6. ECG traces of mutation carriers showing leads V1, V2, and V5. A) QT interval prolongation 
B) ST segment elevation (patient IV-5 of the pedigree). C) ST segment elevation and right bundle 
branch block (patient IV-3 of the pedigree). D First-degree AV block and  E sinus arrest (patient III-14 
of the pedigree). From Grant et al (31).  
 
 
 

 

Figure 7 (A,B) Cardiac phenotype of PFHBI patients. (A) Sinus rhythm with a RBBB in an 8-year-old 
asymptomatic boy on a standard 12-lead ECG, with leads Std I, V1, and V6 shown. (B) 2:1 
atrioventricular node block (atrial rate, 76 bpm; ventricular rate, 38 bpm) with a broad QRS complex 
on Holter monitoring in a 54-year-old man who had recently become symptomatic. ECGs were 
recorded at a 25 mm/s paper speed and 10 mm/mV signal amplitude. (C) TRPM4 missense mutation 
in exon 1 associated with PFHBI. Electropherograms show TRPM4 WT sequence and the 
heterozygous sequence change c.19G→A in the DNA of PFHBI-affected individuals. From Kruse et al 
(50).   

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kruse%20M%22%5BAuthor%5D


 
 

 
Figure 8. Manhattan plot of SNPs associated with heart rate. The 7 loci that were previously 
identified are highlighted in light blue; the 14 newly associated loci are highlighted in dark blue. Loci 
that reached P < 3 × 10−5 after stage 1 but did not reach P < 5 × 10−8 after multi-stage meta-analysis 
are highlighted in red. From den Hoed et al (79). 

 

 

 

 

Figure 9. The interaction between structural and functional anomalies promoting AF and Left 

ventricular dysfunction. From Kirchhof et (260). 

 
 



 
 
 
Figure 10. The AP is initiated by a rapid influx of Na ions (phase 0), followed by early (phases 1 and 2) 
and late (phase 3) stages of repolarization, before returning to the resting membrane potential 
(phase 4). Repolarization is controlled by a balance between inward (red) and outward (blue) 
currents. The genes encoding the major currents of the atrial AP are shown. *Function-modifying 
subunit. #Mutation in this gene associated with atrial fibrillation. From Darbar and Roden (255).  
 
 
 
  



 
 

 
 
Figure 11 (1st version) 
 
 

 
 
 
Figure 11 (2nd version). Manhattan plot of meta-analysis results for genome-wide association with 
atrial fibrilla�on. The −log10 (P value) is plotted against the physical position of each SNP on each 
chromosome. The threshold for genome-wide significance, P < 5 × 10−8, is indicated by the dashed 
line. The previously reported loci for AF are indicated in blue, and the new loci that exceeded the 
genome-wide significance threshold are indicated in orange. First version is from Ellinor et al (177), 
but up to date figure is from talk by Ellinor at HRS. 
 
 
 
 



 
 
 
Figure 12. The association between AF and the T-allele of rs2200733, which tags an AF susceptibility 
locus on chromosome 4q25, is displayed across independent samples from published studies (total 
n=10 115 affected, 65 229 unaffected). Colours indicate the different studies from which the 
samples were reported. *Case-control study sample. †Prospec�ve cohort study. AFR indicates Atrial 
Fibrillation Registry; BWH, Brigham and Women's Hospital; CSR, Cardiac Surgery Registry; ARIC, 
Atherosclerosis Risk in Communities Study; AGES, Age, Gene/Environment Susceptibility Reykjavik 
Study; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; MGH, Massachusetts 
General Hospital; and THI, Texas Heart Institute. From Lubitz et al (261). 
  



 
 

 
 
 
Figure 13. The activity of β-galactosidase was detected in PITX2c-Cre/+R26R mice by using X-gal 
staining of embryos (A, upper panel). The absence of β -galactosidase activity in the Pitx2c-Cre/-
R26R pulmonary vein indicates the deficiency of PITX2c myocardial cell (A, lower panel). Cardiac 
troponin I (cTnI) staining demonstrated differentiated myocardial cells in a wild-type heart (B, upper 
panel), but an absence of myocardial cells in the heart of a Pitx2c KO KO  littermate (B, lower panel). 
The process of the development of pulmonary myocardium (pulm. myoc.) with either differentiation 
of pulmonary mesenchyme (pulm. mesen.) to myocardium or invasion of pulmonary vein by atrial 
myocardium requires presence of Pitx2c (C). PV indicates pulmonary vein; LL, left lung, RL, right lung; 
RA, right atrium; LSH, left sinus horn; RSH, right sinus horn; (R/L) A, right/left atrium. From Lubitz et 
al (261). 
 
 
 

 

 
 
Figure 14. Integration of environmental and genetic factors in AF pathogenesis. From Darbar and 
Roden (255). 
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